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Abstract Principal axis formulations are regularly used in
isotropic elasticity, but they are not often used in dealing
with anisotropic problems. In this paper, based on a princi-
pal axis technique, we develop a physical invariant ortho-
tropic constitutive equation for incompressible solids, where
it contains only a one variable (general) function. The cor-
responding strain energy function depends on six invariants
that have immediate physical interpretation. These invariants
are useful in facilitating an experiment to obtain a specific
constitutive equation for a particular type of materials. The
explicit appearance of the classical ground-state constants in
the constitutive equation simplifies the calculation for their
admissible values. A specific constitutive model is proposed
for passive myocardium, and the model fits reasonably well
with existing simple shear and biaxial experimental data. It
is also able to predict a set of data from a simple shear exper-
iment.

Keywords Strain energy · Myocardium · Invariants with
immediate physical meaning · Orthotropic · Principal axes ·
Incompressible

1 Introduction

Excellent and comprehensive analyses on mechanical prop-
erties of passive myocardium have recently been carried
out by Holzapfel and Ogden (2009a). They also excellently
discussed several constitutive models that appeared in the
literature, and readers are referred to their paper for detailed
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information. In isotropic elasticity, phenomenological strain
energy functions with principal stretches have certain attrac-
tive features from both the mathematical and physical view-
points (Ogden 1972; Valanis and Landel 1967). These forms
of strain energy have been widely and successfully used in
predicting elastic deformations (Ogden 1972; Shariff 2000;
Marckmann and Verron 2006). The Valanis and Landel
(1967) isotropic strain energy function has not only been suc-
cessful in modelling various types of isotropic solid (Shariff
2000), but is also simple in form in the sense that it uses only
a general single variable function. In addition to the above
attractive features, we note that it is easier to analyse the
stress-softening behaviour of anisotropic soft tissues using
principal stretches (Dorfmann et al. 2007).

Inspired by the principal stretch successes and the sim-
ple form of Valanis and Landel (1967), in this commu-
nication, we construct a strain energy function that con-
tains only a general single variable function. We propose
a constitutive equation based on the recent principal axis
formulation of Shariff (2011) for orthotropic solids. The
proposed strain energy function for the constitutive equa-
tion depends on six simple invariants that have immediate
physical interpretation. Two of the invariants are the prin-
cipal extension ratios λi (i = 1, 2), and the other four are
1 ≥ ζi = (a•ei )

2 ≥ 0 and 1 ≥ ξi = (b•ei )
2 ≥ 0 (i = 1, 2),

where e1 and e2 are any two principal directions of the right
stretch tensor U , and a and b are the preferred orthogo-
nal directions of the orthotropic solid. The physical mean-
ing of λi is obvious, and it is clear that ζi and ξi are the
square of the cosine of the angle between the principal direc-
tion ei and the preferred directions a and b, respectively.
A strain energy formulation using non-immediate-physical
interpretation invariants is, in general, not experimentally
friendly. For example, an isochoric uniaxial stretch in one of
the preferred directions will perturb all the classical invariants
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given in Eq. (2.5), which is not ideal in obtaining a specific
form of strain energy function if the specific form is deter-
mined by doing tests that vary one invariant and hold the rest
of the invariants constant. However, the immediate-physical-
interpretation invariants used here are experimentally friendly
as described in Shariff (2011). In Sect. 2, a symmetrical
general strain energy function expressed in terms of the
immediate-physical-interpretation invariants is introduced.
Using these invariants, the incompressible ground-state con-
ditions for orthotropic materials are easily derived in Sect. 2.
We note that the ground-state conditions are rarely derived
for other types of invariants that appeared in the literature.
The theoretical results for biaxial and simple shear deforma-
tions given in Sect. 3 are used in Sect. 6, where we compare
our theory with experimental data. When a nonlinear incom-
pressible orthotropic strain energy function is specialized to
classical (infinitesimal) elasticity, it should contain six inde-
pendent classical ground-state constants (Spencer 1984) to
fully characterize an arbitrary material in infinitesimal strain
deformations. In Sect. 4, a constitutive model is proposed; It
contains only a general single variable function s, and the six
independent classical ground-state constants (Spencer 1984)
appear explicitly. A specific form of s is proposed for pas-
sive myocardium soft tissue. One advantage of having the
ground-state constants appear explicitly in the model is that
we could easily put restrictions on their values (for physically
reasonable responses), and this is done in Sect. 5, where a
restriction on the function s is also given. Finally, in Sect. 6,
our specific constitutive equation is curve fitted to Dokos
et al. (2002) simple shear and Yin et al. (1987) biaxial data.
We only curve fit our model to five of the six sets of simple
shear data and successfully predict the sixth set of data.

2 Strain energy function with physical invariants

We first recall some essential kinematics of finite deforma-
tion of an orthotropic elastic solid. Consider a body occu-
pying the region B0 in some reference configuration. Let F

be the deformation tensor and X a position vector of a point
in B0. Under this deformation, the point moves to a new
position x(X) ∈ B, where B is the current configuration of
the deformed body. The principal stretch λi (i = 1, 2, 3) is
given by

λi = ei • Uei , (2.1)

where U2 = F T F . In this communication, all subscripts i
and j take the values 1, 2 and 3, unless stated otherwise.

In view of the work of Holzapfel and Ogden (2009a), a
passive myocardium tissue can be treated as an incompress-
ible orthotropic material with the preferred orthogonal direc-
tions a and b. For an incompressible material, we have the
constraint λ1λ2λ3 = 1. As mentioned in Sect. 1, recently,

Shariff (2011) developed a strain energy function We for
an incompressible orthotropic material, where its invariants
have immediate physical interpretation. It has the form

We = W (λ1, λ2, ζ1, ζ2, ξ1, ξ2)

= W̃

(
λ1, λ2, λ3 = 1

λ1λ2
, ζ1, ζ2, ξ1, ξ2

)
(2.2)

In this paper, we let a and b represent the fibre and (cross-
fibre) sheet directions of the myocardium, respectively, and
the sheet-normal direction is perpendicular to both a and b.
The function W enjoys the symmetry

W (λ1, λ2, ζ1, ζ2, ξ1, ξ2) = W (λ2, λ1, ζ2, ζ1, ξ2, ξ1). (2.3)

In the reference state U = I (the identity tensor), λ1 =
λ2 = λ3 = 1, any orthonormal set of vectors can represent
the principal directions of U . For simplicity, we let a = e3

and b = e2. Hence, ζ1 = ζ2 = 0 and ξ2 = 1, ξ1 = 0 in
this state. To be consistent with the classical linear theory of
incompressible orthotropic elasticity, appropriate for infin-
itesimal deformations, we must have the non-zero second
derivative relations

∂2W

∂λ2
1

(1, 1, 0, 0, 0, 1) = 4μ + 4μ1 + β1,

∂2W

∂λ2
2

(1, 1, 0, 0, 0, 1) = 4μ + 2μ1 + 4μ2 + β1 + β2 − 2β3,

∂2W

∂λ1∂λ2
(1, 1, 0, 0, 0, 1) = 2μ + 2μ1 + β1 − β3, (2.4)

where μ, μ1, μ2, β1, β2 and β3 are ground-state elastic
constants (Spencer 1984).

The classical invariants Ik , (k = 1, 2, . . . , 7) are related
to our invariants via the relations

I1 = trC = λ2
1 + λ2

2 + λ2
3,

I2 = (trC)2 − trC2

2
= λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3,

I4 = a • Ca = λ2
1ζ1 + λ2

2ζ2 + λ2
3ζ3,

I5 = a • C2a = λ4
1ζ1 + λ4

2ζ2 + λ4
3ζ3,

I6 = b • Cb = λ2
1ξ1 + λ2

2ξ2 + λ2
3ξ3,

I7 = b • C2b = λ4
1ξ1 + λ4

2ξ2 + λ4
3ξ3, (2.5)

where C = U2, ζ3 = 1 − ζ1 − ζ2 and ξ3 = 1 − ξ1 − ξ2.
For an incompressible solid, the invariant I3 = det(C) =
(λ1λ2λ3)

2 = 1. The invariant sets {I1, I2, I4, I5, I6, I7} and
{λ1, λ2, ζ1, ζ2, ξ1, ξ2} are a minimal integrity basis (Spencer
1971) with a syzygy (Shariff 2011).

3 Biaxial and simple shear deformations

In Sect. 6, we compare our theory with the biaxial and simple
shear experiments of Yin et al. (1987) and Dokos et al. (2002),
respectively. To facilitate Sect. 6, we give some theoretical
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results for biaxial and simple shear deformations and reveal
the mathematical simplicity of the proposed formulation.

3.1 Homogeneous biaxial deformation

We consider the pure homogeneous deformation defined by

x1 = λ1 X1, x2 = λ2 X2, x3 = λ3 X3, (3.1)

where xi and Xi are the Cartesian components of x and X,
respectively. For this deformation, the principal axes of the
deformation coincide with the Cartesian coordinate axes and
are fixed as the values of the stretches change. Thus, F ≡
diag(λ1, λ2, λ3). On specializing to a biaxial deformation
applied on a thin sheet that lies on the (X1, X2)-plane with
the Cauchy stress component σ33 = 0, we have the stress–
strain relations (Shariff 2011)

σ11 = λ1
∂W

∂λ1
, σ22 = λ2

∂W

∂λ2
, (3.2)

σ12 = 2λ1λ2

λ2
1 − λ2

2

((
∂W

∂ζ1
− ∂W

∂ζ2

)
e1 • Ae2

+
(

∂W

∂ξ1
− ∂W

∂ξ2

)
e1 • Be2

)
, (3.3)

σα3 = 2λαλ3

λ2
α − λ2

3

(
∂W

∂ζα

eα • Ae3 + ∂W

∂ξα

eα • Be3

)
,

α = 1, 2, (3.4)

where A = a ⊗ a (⊗ denotes the dyadic product) and B =
b ⊗ b. When the preferred directions a and b are taken to be
perpendicular to e3, we have,

σα3 = 0, α = 1, 2. (3.5)

In this case, it is explicit in Eq. (3.3) that σ12 vanishes if a

or b is along one of the coordinate axes or for a mechan-
ically equivalent material when ζα = ξα (α = 1, 2) and
e1 • Ae2 = −e1 • Be2. In this case the Cauchy stress σ is
coaxial with the left stretch tensor V .

3.2 Simple shear

In Sect. 3.1, results for a homogeneous deformation, where
the principal directions are fixed during deformation, are
given. In this section we give results for a simple shear defor-
mation where the principal directions of U change continu-
ously during deformation.

To describe this deformation we let the Cartesian axes of
x and X to coincide and the deformation can be described
by the equations

x1 = X1 + γ X2, x2 = X2, x3 = X3, (3.6)

where the amount of shear γ ≥ 0. The principal directions
e1, e2 and e3 have Cartesian components⎡
⎣ c

s
0

⎤
⎦ ,

⎡
⎣−s

c
0

⎤
⎦ and

⎡
⎣ 0

0
1

⎤
⎦ , (3.7)

respectively, where c and s are given in Eq. (3.9) (Shariff
2008a). It can be easily shown that the principal stretches
take the values

λ1 = γ + √
γ 2 + 4

2
≥ 1, λ2 = 1

λ1
=

√
γ 2 + 4 − γ

2
≤ 1,

λ3 = 1 (3.8)

and

c = 1√
1 + λ2

1

, s = λ1√
1 + λ2

1

. (3.9)

Without loss of generality, we consider σ33 = 0, since incom-
pressibility allows the superposition of an arbitrary hydro-
static stress without affecting the deformation.

The Cartesian shear component of the Cauchy stress takes
the form (Shariff 2011)

σ12 = 2
[
l1(γ s2 + cs) + l2(γ c2 − cs) + l3γ cs

]
(3.10)

where

l1 = 1

2λ1

∂W̃

∂λ1
, l2 = 1

2λ2

∂W̃

∂λ2
,

l3 = 1

λ2
1 − λ2

2

[(
∂W̃

∂ζ1
− ∂W̃

∂ζ2

)
e1 • Ae2

+
(

∂W̃

∂ξ1
− ∂W̃

∂ξ2

)
e1 • Be2

]
. (3.11)

4 A specific form of incompressible We

Using series expansion and Weierstrass approximation the-
orem, Shariff (2011) has shown that a general strain energy
function We for an incompressible orthotropic solid can be
written in the form

We =
3∑

i=1

f̂ (λi , ζi , ξi ) + ĝ(λ1, λ2, ζ1, ζ2, ξ1, ξ2)

+ ĝ(λ1, λ3, ζ1, ζ3, ξ1, ξ3) + ĝ(λ2, λ3, ζ2, ζ3, ξ2, ξ3).

(4.1)

The function ĝ has the symmetry

ĝ(λi , λ j , ζi , ζ j , ξi , ξ j ) = ĝ(λ j , λi , ζ j , ζi , ξ j , ξi ), i �= j.

A general incompressible nonlinear (finite deformation)
orthotropic strain energy function is more difficult to ana-
lyse than a (infinitesimal) linear one. For an incompressible
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material, the linear strain energy function has six indepen-
dent ground-state constants (see Eq. (2.4)), where their role is
generally fully understood. However, more often, previously
proposed nonlinear strain energy functions have constants
that are indirectly related to the ground-state constants, and
generally, their role is not straightforward to analyse. We also
note that some workers in the past proposed strain energy
functions, where some of the six classical ground-state con-
stants are not independent. In this communication, the six
classical ground-state constants are assumed, on the onset,
to be independent, and their specific values for a particular
material are obtained experimentally. However, if there is a
justification that some of the classical ground-state constants
are not independent, then the proposed model could easily
accommodate the interdependence of the ground-state con-
stants (see Sect. 6).

A nonlinear strain energy function where its classical
ground-state constants are explicitly expressed is attractive in
the sense that their role is easier to analyse (see also Sect. 5).
Using our proposed invariants, it is straightforward to extent
the linear strain energy (Spencer 1984) to a semi-linear form
(for mildly moderate strains), that is, the terms in We given
by (4.1) have the forms

f̂ (λi , ζi , ξi ) = (λi − 1)2
[
μ + 2μ1ζi + 2μ2ξi

+ β1

2
ζ 2

i + β2

2
ξ2

i + β3ζiξi

]

ĝ(λi , λ j , ζi , ζ j , ξi , ξ j ) = (λi − 1)(λ j − 1)[β1ζiζ j + β2ξiξ j

+ β3(ζiξ j + ξiζ j )], i �= j. (4.2)

For larger strains, we propose an extension of the semi-linear
form, where

f̂ (λi , ζi , ξi ) = r(λi )

[
μ + 2μ1ζi + 2μ2ξi

+ β1

2
ζ 2

i + β2

2
ξ2

i + β3ζiξi

]

ĝ(λi , λ j , ζi , ζ j , ξi , ξ j ) = s(λi )s(λ j )[β1ζiζ j + β2ξiξ j

+ β3(ζiξ j + ξiζ j )] , i �= j, (4.3)

where r = s2. It is clear from (4.3) that the strain energy
function has a unique value if two or more of the principal
stretches have the same value. The classical ground-state con-
stants appear explicitly in the strain energy function. To sat-
isfy the ground-state conditions and zero strain energy at the
reference configuration, we impose the conditions s(1) = 0
and s′(1) = 1. Note that, although the semi-linear form is
valid for mildly moderate strains, useful information can be
extracted from it, and in view of the ground-state-constant
similarity between the semi-linear and the extended forms,
this information can be used to analyse the extended strain
energy function. Also, since s is a single variable function, it

is easier to analyse than multivariable functions. This formu-
lation is attractive in the sense that we only need to formulate
s for different types of orthotropic material, for example, fibre
reinforced rubbers and orthotropic soft tissues.

In soft tissues, the initial large extension is generally
achieved at relatively low levels of stress with subsequent
stiffening at higher levels of extension. This behaviour is
due to the recruitment of collagen fibres as they become
uncrimped and reach their natural lengths (Ogden 2003;
Holzapfel and Ogden 2009a). The inverse error function
er f −1(x) seems a good candidate to describe the above men-
tioned soft tissue stress–strain behaviour since it has low ini-
tial gradients followed by high gradients at higher values of
x . In view of this, we propose the function s given by

s(x) = 2

α0
√

π
er f −1(α0ln(x)) +

n∑
i=1

φi (x), (4.4)

where α0 �= 0 is a dimensionless material parameter and the
function φi has the property φi (1) = φ′

i (1) = 0 so that the
conditions s(1) = 0 and s′(1) = 1 are satisfied. The first part
of Equation (4.4) describes the primary stress–strain behav-
iour while the second part is used for fine-tuning. We use
the natural log function in Eq. (4.4) in order to have a large
range of admissible values of α0 (see Sect. 5 for details). In
this paper, to fit the experimental data considered here, we
only consider

s(x) = 2

α0
√

π
er f −1(α0ln(x)) + φ1(x) (4.5)

where φ1(x) = α1(e1−x + x − 2) (Shariff 2000) and α1 is
a dimensionless material parameter. We note, for example,
the function φ1(x) = α1(x − 1)3 can also be used to fit the
experimental data reasonably; however, we do not discuss its
fitting behaviour here.

5 Constraints on material constants

To ensure physically reasonable responses, restrictions are
imposed on the proposed strain energy function which in turn
restrict the values of the material constants. We first consider
the restrictions on the ground-state constants. In incompress-
ible infinitesimal classical elasticity, if we let a and b have the
Cartesian components [1, 0, 0]T and [0, 1, 0]T , respectively,
we have the stress–strain relations

σ M = AmeM − pw, (5.1)

where σ M = [σ11, σ22, σ33, σ23, σ31, σ12]T ,
eM = [e11, e22, e33, 2e32, 2e31, 2e12]T ,
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w = [1, 1, 1, 0, 0, 0]T ,

AM =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 β3 0 0 0 0
β3 c2 0 0 0 0
0 0 2μ 0 0 0
0 0 0 c3 0 0
0 0 0 0 c4 0
0 0 0 0 0 c5

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5.2)

c1 = β1 + 2μ + 4μ1, c2 = β2 + 2μ + 4μ2, c3 = μ + μ2,
c4 = μ + μ1, c5 = μ + μ1 + μ2 and ei j are the Carte-
sian components of the infinitesimal strain.The strain energy
function is given by

We = 1

2
σ T

MeM = 1

2

[
(c1 + 2μ)e2

11 + 2(β3 + 2μ)e11e22

+ (c2 + 2μ)e2
22 + 4c3e2

32 + 4c4e2
31 + 4c5e2

12

]
, (5.3)

after taking into account that e11 + e22 + e33 = 0. Since
e11, e22, e12, e31 and e32 are independent, necessary and suf-
ficient conditions for (5.3) to be positive definite are:

c3 > 0, c4 > 0, c5 > 0, c1 + 2μ > 0,

(c1 + 2μ)(c2 + 2μ) > (β3 + 2μ)2. (5.4)

Sufficient conditions for We to be positive definite in a finite
deformation are given in “Appendix A”.

The restrictions on the values of the parameters α0 and α1

are governed by the restrictions on the function r or s. We do
this by considering a special set of admissible ground-state
constant values, where μ > 0 and the rest have zero values.
This set of values corresponds to a strain energy of an iso-
tropic material. Using Hill (1970) inequality, it is shown in
Shariff (2000) that, to ensure physically reasonable responses
for incompressible isotropic materials, we require the con-
dition h′(x) > 0, for x > 0, where h(x) = xr ′(x); in this
paper, we use this necessary condition to restrict the values of
α0 and α1 for the proposed anisotropic model. For example,
if we let

s(x) = 2

α0
√

π
er f −1(α0ln(x)), (5.5)

we then have, for x > 0,

h′(x) = 2xs′(x)2 + 4

x
z2e2z2

> 0, (5.6)

for all α0 �= 0, where z = er f −1(α0ln(x)). In the case
of s(x) given in (4.5), the admissible ranges of α0 and α1

are not straightforward to obtain. However, for given values
of α0 and α1, we can easily (and non-rigorously) verify if
h′(x) > 0 by plotting h′(x) for practical values of x > 0.
The concepts of polyconvexity (Itskov and Aksel 2004), con-
vexity and stability (Holzapfel and Ogden 2009a) can also
be used to restrict the values of our material constants, and
we hope to do this in the near future. However, we note that

stability in an infinitesimal deformation (relative to a stress-
free ground-state configuration) is achieved if the classical
ground-state constants have the restricted values.

6 Comparison with experimental data

In this section, we show the efficacy of the special consti-
tutive form for fitting data on the myocardium. The simple
shear data of Dokos et al. (2002) and the biaxial data of Yin
et al. (1987) are used in the curve fitting exercise. The least-
squares method is used in the curve fitting, where its solution
corresponds to a local minimum. We cannot guarantee that
our local minimum is a global minimum. We emphasize that
care must be taken in interpreting the results from a curve
fitting exercise. For example, the ground-state constant val-
ues will not be accurately obtained if there are insufficient
data at low strains. In this communication, the experimental
data for both the biaxial and simple shear deformations are
extracted from the published work of Holzapfel and Ogden
(2009a).

6.1 Dokos et al. (2002) experiment

The theoretical curves used to fit the experiment data are
obtained from Eqs. (3.10) and (3.11). We model the experi-
mental shear in different directions with a shear in one direc-
tion and the vectors a and b acquiring different directions.

In Fig. 1, there are six sets of data; however, the data
corresponding to the fibre/sheet directions with Cartesian
components [1, 0, 0]T /[0, 0, 1]T and [0, 0, 1]T /[1, 0, 0]T

are indistinguishable. We note that no experiment is perfect.
This indistinguishable behaviour could be caused by minute
errors or approximations in the experiment, or it could be
the actual behaviour of the myocardium specimen or other
unknown factors. The model we proposed here is intended to
characterize several types of myocardium, not only the spec-
imen used in Dokos et al. (2002) experiment. Hence, we do
not, on the onset, construct a constitutive equation so that the
two theoretical curves, corresponding to the fibre/sheet com-
ponents [1, 0, 0]T /[0, 0, 1]T and [0, 0, 1]T /[1, 0, 0]T , are
the same. We note that, Holzapfel and Ogden (2009a), how-
ever, remove the invariant a•C(a×b) (or b•C(a×b)) from
their strain energy function so that their two theoretical curves
will be the same. In infinitesimal deformations, the shear
stresses for the fibre/sheet directions [1, 0, 0]T /[0, 0, 1]T and
[0, 0, 1]T /[1, 0, 0]T are

σ12 = (μ + μ1)γ (6.1)

and

σ12 = (μ + μ2)γ, (6.2)

respectively. They are the same if and only if μ1 = μ2.
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220 M. H. B. M. Shariff

Fig. 1 Fit of the proposed model to the loading data of Dokos et al.
(2002) for simple shear in various directions. α0 = 3.416, α1 =
0.437, μ = 0.353, μ1 = −0.267, μ2 = 0.109, β1 = 95.224, β2 =
8.773, β3 = −25. Eight material parameters

We only apply the least-squares fit to five sets of data that
correspond to fibre/sheet directions with Cartesian compo-
nents (from top to bottom in Fig. 1): (a) [0, 1, 0]T /[1, 0, 0]T

(b)[0, 1, 0]T /[0, 0, 1]T (c) [1, 0, 0]T /[0, 1, 0]T (d) [0, 0, 1]T

/[0, 1, 0]T (e)[1, 0, 0]T /[0, 0, 1]T . We then predict the set
of data that corresponds to the fibre/sheet directions with
components [0, 0, 1]T /[1, 0, 0]T . Initially, we blindly least-
square fit all the eight material parameters to the five sets
of data and obtained ground-state values that do not satisfy
the last inequality in (5.4); we do not expect to get reason-
able ground-state results from blind fitting since some of the
data at low strains are missing or indistinguishable for the
different fibre/sheet directions. Since these are not desirable
values, we fix the value β3 = −25 in an ad hoc manner
and obtain the rest of the material parameter values via the
least-squares method. These eight material parameter values
are given in Fig. 1, and with these values, the inequalities in
(5.4) are satisfied and the condition h′(x) > 0 is satisfied.
It is clear in Fig. 1 that very good agreement is indicated
between the model and the experimental data. The predicted
curve is also in good agreement with the experimental data. It
is worth noting that a reasonable agreement between theory
and experiment can also be obtained if we use seven parame-
ters, where the function φ1 is omitted in Eq. (4.5). However,
we do not show this plot.

It is desirable, in general, to curve fit a data using a least-
squares method with a small number of parameters. One way
to reduce the number of material parameters is by assuming
that some of them are not independent. In the past, some con-
stitutive models have ground-state constants that are numeri-
cally less than six which indicate that, in these models, either

some of the classical ground-state constants are assumed to
be zero or some of them are not independent. For example, in
“Appendix B”, we have shown that, in Holzapfel and Ogden
(2009a) model, only four of the classical ground-state con-
stants are independent, that is,

μ = aiso − a f s, μ1 = a f s, μ2 = a f s,

β1 = 4a f , β2 = 4as, β3 = 2a f s, (6.3)

where aiso, a f s , a f and as are independent parameters. If
we substitute Eq. (6.3) in the proposed model, we then have
a model with only six independent parameters. It is clear in
Fig. 2 that the reduced six parameter model fits Dokos et al.
(2002) data very well. The six-parameter predicted curve
fits better then the eight-parameter predicted curve. Since
our model is different from Holzapfel and Ogden (2009a)
model, this good fit seems to further justify Holzapfel and
Ogden (2009a) analysis of passive myocardium.

6.2 Yin et al. (1987) experiment

Holzapfel and Ogden (2009a) used the biaxial data of Yin
et al. (1987) for illustration purposes because, to their knowl-
edge, they are the only true biaxial data available; we will do
the same. We note that Yin et al. (1987) data do not provide
information at low strains, hence will not give accurate results
for the classical ground-state constants. For the biaxial test,
the relevant stress components take the forms:

S f f = A1
r ′(λ1)

λ1
− μ

λ3r ′(λ3)

λ2
1

+ β3
s′(λ1)s(λ2)

λ2
1

Sss = A2
r ′(λ2)

λ2
− μ

λ3r ′(λ3)

λ2
2

+ β3
s′(λ2)s(λ1)

λ2
2

, (6.4)

where

A1 = μ + 2μ1 + β1

2
, A2 = μ + 2μ2 + β2

2
, (6.5)

λ1 = √
2E f f + 1, λ2 = √

2Ess + 1, Sss and S f f are
the components of the second Piola-Kirchhoff stress in the
sheet (cross-fibre) and fibre directions, respectively, and ESS

and E f f are the corresponding components of the Green-
Lagrange strain tensor. Curve fitting will only give numerical
values of A1,A2, μ, β3, α0 and α1. It is clear from (6.5) that
we cannot fully characterize the strain energy function from
the biaxial data in the sheet (cross-fibre) and fibre directions
(see also Shariff 2008a and Holzapfel and Ogden 2009b).
Hence, care must be taken in drawing conclusions from this
biaxial data. This highlights the need for more complete biax-
ial data, for example, in addition to biaxial data in the sheet
and fibre directions, we need stress–strain biaxial data sets
that are not in the sheet or fibre directions (Shariff 2008a)
(the author is not sure if this can be done experimentally).
Due to lack of data at low strains, the fit presented in Figs. 3
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Fig. 2 Fit of the proposed model to the loading data of Dokos et al.
(2002) for simple shear in various directions. α0 = 3.617, α1 =
2.166, aiso = 0.385, a f s = 0.749, as = 0.335, a f = 9.067. Six
material parameters

Fig. 3 Fit of the proposed model to the biaxial data of Yin et al. (1987).

S−ff = S f f , E−ff = E f f and
E f f

Ess
= 2.05 (triangles), 1.02 (squares)

and 0.48 (circles). α0 = 4.998, α1 = 250.819, A1 = 0.047, μ = 0,

β3 = 0.061

and 4 is therefore rather crude; however, our model reflects
the general behaviour for the different constant strain ratios
E f f

Ess
.

The biaxial data of Yin et al. (1987) can also be captured
(plot not shown) by a transversely isotropic model with the
preferred direction a using only three parameters A1, μ and

Fig. 4 Fit of the proposed model to the biaxial data of Yin et al. (1987).

S−ss = Sss , E−ss = Ess and
E f f

Ess
= 2.05 (triangles), 1.02 (squares)

and 0.48 (circles). α0 = 4.998, α1 = 250.819, A2 = 0.017, μ = 0,

β3 = 0.061

α0. The stress–strain component relations for a transversely
isotropic solid take the form

S f f = A1
r ′(λ1)

λ1
− μ

λ3r ′(λ3)

λ2
1

(6.6)

Sss = μ

(
r ′(λ2)

λ2
− λ3r ′(λ3)

λ2
2

)
. (6.7)

Curve fitting will only give numerical values for A1,μ andα0.
Hence the values of μ1 and β1 cannot be uniquely obtained.
This suggest that, even for transversely isotropic materials
[Yin et al. (1987) material is orthotropic], we need additional
sets of experimental data that are not parallel or perpendicular
to a to fully characterize the material.

7 Concluding remarks

A physical invariant general strain energy function contain-
ing all the orthotropic classical ground-state constants is
proposed. The general form contains only a general single
variable function which is then specialized to characterize
passive myocardium. The invariants used in our constitutive
equation have immediate physical interpretation which can
facilitate experiments to obtain specific forms of the strain
energy. The single general function may be easily specialized
to mechanically describe other orthotropic soft tissues and
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can be easily adapted to model stress-softening behaviour of
soft tissues with anisotropic behaviour (Shariff 2008b). The
proposed constitutive model fitted well with experimental
data and managed to predict a set of simple shear experi-
mental data. The extent of the proposed model applicability
to other orthotropic soft tissues needs to be assessed by com-
paring it with relevant experimental data of a much wider
class of orthotropic soft tissues.

Appendix A

In this appendix, we derive, for finite strain deformations,
sufficient conditions for the strain energy We to be positive
definite. Consider the tensor S (coaxial with the right stretch
tensor U ) with the eigenvalues s(λi ), that is,

S =
3∑

i=1

s(λi )ei ⊗ ei . (A.1)

Hence, we have

S2 =
3∑

i=1

r(λi )ei ⊗ ei .

With a little algebra, we have,

We = μtr(S2) + 2μ1a • S2a + 2μ2b • S2b

+ β1

2
(a • Sa)2 + β2

2
(b • Sb)2 + β3(a • Sa)(b • Sb).

(A.2)

if we let a and b have the Cartesian components [1, 0, 0]T

and [0, 1, 0]T , respectively, we then have

We = 1

2
sT

mAmsm, (A.3)

where sm = [S11, S22, S33, 2S32, 2S31, 2S12]T and Si j are
the Cartesian components of S. We note that, due to the
incompressibility constraint λ1λ2λ3 = 1, some of the Si j

are not independent, and in view of this, necessary and suffi-
cient conditions for We to be positive definite are not trivial
to obtain. However, if all the eigenvalues of the matrix Am

are positive, then We in (A.3) is positive definite. Hence,
sufficient conditions for positive definite We are:

c1 > 0, c1c2 > β2
3 , μ > 0, c3 > 0,

c4 > 0 , c5 > 0. (A.4)

Appendix B

The strain energy function proposed by Holzapfel and Ogden
(2009a) is

We = aiso

biso
exp [biso(I1 − 3)]

+
∑

i= f,s

ai

2bi

(
exp

[
bi (I4i − 1)2

]
− 1

)

+ a f s

b f s

(
exp

[
b f s I 2

8 f s

]
− 1

)
, (B.1)

where I4 f = I4, I4s = I6 and

I8 f s = a • Cb =
3∑

i=1

λ2
i (a • ei )(b • ei ). (B.2)

In view of (2.5) and (B.2), and the incompressibility con-
straints λ1λ2λ3 = 1, we can write (B.1) as

We = WH (λ1, λ2, ζ1, ζ2, ξ1, ξ2). (B.3)

In order to extract the ground-state constants for (B.1), we
consider the second derivative of (B.3) at the reference state,
that is,

∂2WH

∂λ2
1

(1, 1, ζ1, ζ2, ξ1, ξ2) = 4aiso − 4a f s + 4a f s(ζ1 + ζ3)

+ 4a f s(ξ1 + ξ3) + 4a f (ζ1 − ζ3)
2

+ 4as(ξ1 − ξ3)
2 + 4a f s(ζ1 − ζ3)(ξ1 − ξ3). (B.4)

The above equation is obtained using the relations

a • b = (a • e1)(b • e1) + (a • e2)(b • e2)

+ (a • e3)(b • e3) = 0 (B.5)

and

2(a • e1)(b • e1)(a • e3)(b • e3) = ζ2ξ2 − ζ1ξ1 − ζ3ξ3.

(B.6)

However, for a general orthotropic incompressible strain
energy function W (λ1, λ2, ζ1, ζ2, ξ1, ξ2), we have

∂2W

∂λ2
1

(1, 1, ζ1, ζ2, ξ1, ξ2) = 4μ + 4μ1(ζ1 + ζ3)

+ 4μ2(ξ1 + ξ3) + β1(ζ1 − ζ3)
2 + β2(ξ1 − ξ3)

2

+ 2β3(ζ1 − ζ3)(ξ1 − ξ3). (B.7)

Since in the reference state ζ1, ζ2, ξ1 and ξ2 are arbitrary, on
comparing (B.4) and (B.7), we have

μ = aiso − a f s, μ1 = a f s, μ2 = a f s,

β1 = 4a f , β2 = 4as, β3 = 2a f s . (B.8)

Hence, in Holzapfel and Ogden (2009a) model, only four
of the six classical ground-state constants are independent.
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